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Tests of the Harris energy functional 

A J Read and R J Needs 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 15 June 1989 

Abstract. Tests of the Harris energy functional are presented for a number of different 
systems, using the pseudopotential total energy method within local density theory. Using 
an input charge density consisting of a superposition of pseudo-atomic charge densities we 
evaluate the Harris and Kohn-Sham energy functionals and compare with the self-consistent 
results. We calculate the lattice constant, bulk modulus and some phonon frequencies of 
silicon and the aluminium (111) surface energy. For the bulk properties of silicon both 
functionals yield good agreement with the self-consistent results without the need for self- 
consistency. For the aluminium surface energy neither functional agrees well with the self- 
consistent solution. However, for a range of input charge densities the Harris functional 
consistently gives better results than the Kohn-Sham functional. This result is explained in 
terms of the long-wavelength instability encountered in solving the Kohn-Sham equations. 

1. Introduction 

Density functional theory (Hohenberg and Kohn 1964) has proved a very useful theor- 
etical foundation of quantum mechanical methods for calculating total energies. A 
number of review articles may be consulted for detailed discussions of the theory (for 
example Kohn and Vashishta 1983, Callaway and March 1984). The central results of 
density functional theory are that the ground-state total energy of a system of interacting 
particles is a functional of the ground-state particle density and that this energy functional 
is minimised by the correct density. For practical applications density functional theory 
is often recast within the Kohn-Sham formalism (Kohn and Sham 1965) in which one is 
required to solve single-particle Schrodinger equations (known as Kohn-Sham 
equations) to calculate the total energy. In practical applications the local density 
approximation to the exchange-correction energy has proved useful for systems of 
interacting electrons. Such density functional theory calculations, formulated within 
Kohn-Sham theory and using the local density approximation, have been performed on 
a large number of systems. Although the use of the local density approximation leads to 
large errors in some cases there are many other cases in which excellent agreement with 
experimental results has been obtained (see the review article by Williams andvon Barth 
1983). 

There are many technical problems involved with large-scale applications of the 
Kohn-Sham formulation of density functional theory. In this paper we will test a scheme 
that was originally proposed by Harris (1985) in order to simplify such calculations. 
Some tests of the Harris functional have been reported before (Harris 1985, Polatoglou 
and Methfessel 1988, Foulkes and Haydock 1989) showing that this method can yield 
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excellent results and is worthy of a more complete investigation. In this paper we report 
tests of the Harris functional on a number of different physical systems, illustrating both 
the strengths and weaknesses of the method. 

An important advantage of density functional theory is the existence of a stationary 
principle for the total energy. This principle guarantees that the error in the total energy 
is second order in the deviation of the trial charge density from the exact form. In practice 
this means that it is often possible to obtain accurate estimates of the total energy using 
approximate trial charge densities. The basic point is that there are many different 
energy functionals that are stationary at the true ground-state charge density and some 
may be more convenient to calculate than others. The Harris functional that we shall 
study in this paper has a particularly convenient form for reasons that we will discuss 
later. A disadvantage of the Harris functional over the standard expression is that 
although the Harris form is stationary at the exact charge density it is not necessarily 
minimised by the exact charge density. In practice this may cause some problems because 
one can no longer be sure that a different trial charge density that lowers the calculated 
total energy is in fact closer to the exact solution. This point was recognised by Harris 
(1985) and has been discussed more fully by Foulkes and Haydock (1989). 

The main aim of this paper is to test the accuracy of the Harris energy functional for 
a range of properties and systems. The Harris functional is tested against the standard 
energy functional (which we shall call the Kohn-Sham functional) and against the 
numerically exact solution (which we shall call the self-consistent solution) calculated 
within the local density approximation. The subsiduary aim of this paper is to test 
approximate forms of the charge density for different systems. We will test whether 
a charge density consisting of a superposition of pseudo-atomic charge densities is 
sufficiently close to the exact charge density to give accurate results for a range of 
properties of different systems when used in conjunction with the Harris and Kohn- 
Sham energy functionals. 

2. The Kohn-Sham formulation of density functional theory 

In this section we give a brief mathematical summary of the Kohn-Sham formulation of 
density functional theory. For a derivation of these formulae we refer the reader to the 
articles by Kohn and Vashishta (1983) and Callaway and March (1984). The Kohn- 
Sham equations are 

{ - i V 2  + V[n(r)]>qi(r) = e iqP i ( r )  (1) 

where the ith single-particle orbital is denoted by qi(r)  and ei is the corresponding 
eigenvalue. The potentialV[n(r)], which is a function of r only, is given by 

where V, is the potential due to the nuclei, V, is the electron Hartree potential, pxc is 
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the exchange-correlation potential and n(r) is the electronic charge density. The charge 
density n(r) is given by 

where the summation is over all occupied orbitals. The exchange-correlation potential, 
pxc, is related to the exchange-correlation energy, Exc, by 

Pxc [Wl = 8Exc [n(r>l/84r) (4) 

and the total energy, E ,  is given by 

E[n] = d3rqi(r)*(-iV2)cpi(r)  
i I 

+ d2r  V,(r)n(r)  + E ~ [ n ( r ) ]  + E x c [ ~ ( ~ ) ]  + E,, ( 5 )  

where the first term on the right-hand side of ( 5 )  is the kinetic energy of a non-interacting 
system of electrons of density n(r) ,  EH is the electron Hartree energy and E,, is the 
interaction between the nuclei. Often one uses the local density approximation for Exc, 
which is given by 

~ X c [ n ( r ) l  = J d '1. &sc(n(r>>n(r> (6) 

where ~ ~ ~ ( n ( r ) )  is the exchange-correlation energy per electron of a homogeneous 
electron gas of density n(r) ,  which is known accurately over a wide range of densities 
from diagrammatic (Hedin and Lundqvist 1971) and quantum Monte Carlo (Ceperley 
and Alder 1980) calculations. 

Equations (1) to (6) form a complete prescription for calculating the total energy. 
The problem is a self-consistent one-the potential entering the Kohn-Sham equations 
depends on the charge density n(r)  which i n  turn is determined by the solutions of the 
Kohn-Sham equations. 

3. The Harris and Kohn-Sham energy fiinctionals 

First of all we shall describe a procedure for solving the Kohn-Sham equations self- 
consistently that uses the charge density as the basic variable. One obtains a trial charge 
density n,,(r) and uses equation (2) to calculate the potential V[n(r ) ]  that appears in the 
Kohn-Sham equations (1). The Kohn-Sham equations are then solved yielding the 
eigenfunctions q i ( r )  and the corresponding eigenvalues .zi. The eigenfunctions are used 
to construct the output charge density, nOut(r), from equation (3) and the total energy is 
obtained using the eigenvectors cpl(r) and the output charge density in equation (5). In 
general the output charge density so obtained, nOut, is not equal to the original trial 
charge density, n,,, and so a new trial charge density must be calculated, possibly as 
some linear combination of n,, and nOut, and the procedure repeated until self-consistency 
is achieved, at which point n,, = flout. To be accurate this method actually finds a 
stationary point of the energy functional which need not be the global minimum, but in 
practical applications one does in fact appear to obtain the global minimum. 

After any iteration of the self-consistency process the total energy may be calculated 
using equation (5). The value of the energy will only be correct when self-consistency 
has been reached but a good approximation may well be achieved without iteration or 
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after a small number of iterations. In the standard approach the energy is calculated 
using the Kohn-Sham energy functional of equation (5) which we can rewrite as 

i J 

+ d 3r{V[nout (r>I - v[nin(r>I>nout(r> (7)  i 
where we have used the Kohn-Sham equations (1) to eliminate the kinetic energy term. 
This expression is both minimal and stationary with respect to errors in the charge 
density nout, i.e. 

K = E[n] + O[(n,,, - n)’] + higher-order tems (8) 
where E[n] is the exact energy which is a functional of the exact ground-state charge 
density n and O[(nOut - n)’] indicates a term of order (nout - n)2 which is always positive 
(as is the sum of all correction terms to E[n]) .  Harris (1985) suggested that in some cases 
the Kohn-Sham functional would be inconvenient to calculate because it requires a 
knowledge of no,, and the solution of Poisson’s equation for noul. Harris suggested that 
a more convenient form would be 

i I 

which we shall call the Harris energy functional and denote by H .  Harris (1985) proved 
that this form of the energy is stationary (but not minimal) with respect to errors in the 
charge density. The Harris functional satisfies the following relationship: 

H = E[rz] + O[(no,,t - n)(n,, - n)] + higher-order terms. (10) 
Note that the lowest-order error term for the Harris functional, which can be of either 
sign, is of order (nout - n)(n,, - n)  and it is by no means clear that this should be larger 
than the error term for the Kohn-Sham functional. Although the Harris form (9) requires 
the solution of the Kohn-Sham equations for the potential generated by nln, to obtain 
the eigenvalues E , ,  it does not require the construction of the output charge density no,,t 
or the solution of Poisson’s equation for nOut. For some calculational methods this may 
be a very great advantage, particularly in methods using local orbital basis sets. The 
calculations reported in this paper use the total energy pseudopotential method and a 
plane-wave basis set and in this case the calculation of no., is straightforward. Our main 
aim was to test the Harris functional for applications in techniques where nOut is difficult 
to calculate, although in fact we will find that the Harris functional may be of use even 
when nOut can readily be calculated. 

4. Tests of the Harris and Kohn-Sham energy functionals 

We have performed a number of tests of the Harris and Kohn-Sham energy functionals. 
In each case we have compared the energies calculated using these functionals with the 
energies from self-consistent calculations. The calculations were performed using the 
total energy pseudopotential method with norm-conserving pseudopotentials (Hamann 
et al 1979), constructed using the algorithm due to Kerker (1980), and a plane-wave 
expansion for the wavefunctions and potentials. For a review of this technique see the 
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Table 1. Results for silicon in the diamond structure. The table gives the calculated values 
of the total energy at the experimental equilibrium lattice constant of 5.429 A, the calculated 
equilibrium lattice constant, bulk modulus, TO(r) phonon frequency and TA(X) phonon 
frequency. In each case the total energies were calculated from the Harris functional, H ,  
and the Kohn-Sham functional, K ,  using a superposition of pseudo-atomic charge densities 
for ni, and from a self-consistent calculation giving E. 

Harris Kohn-Sham Self-consistent 
using H using K using E 

Total energy (eV) -108.03 -107.88 -107.91 
Deviation from E-result -0.11% +0.03% 

Lattice constant (A) 5.335 5.415 5.397 
Deviation from E-result -1.1% +0.3% 

Bulk modulus (Mbar) 1.027 0.967 0.983 
Deviation from E-result +4.5% - 1.6% 

To(r) frequency (THz) 15.17 15.38 15.31 
Deviation from E-result -0.9% +0.45% 

TA(X) frequency (THz) 4.69 4.55 4.48 
Deviation from E-result +4.7% +1.5% 

article by Ihm (1988). In each case we have taken a superposition of neutral pseudo- 
atomic charge densities for the trial charge density, nin, i.e. 

a 

where Re is the position vector of the a2h atom. The pseudo-atomic charge densities 
were obtained from self-consistent calculations of the charge density of non-spin-polar- 
ised atoms in their ground-state configurations using the same pseudopotentials as in 
the bulk calculations. 

Our first test case was silicon in the diamond structure. We calculated the energy as 
a function of volume for fifteen volumes in the range 0.857V0 to 1.158Vo, where V ,  = 
20.002 A3 and is the experimental equilibrium volume per atom. A basis set including 
all plane waves with kinetic energy up to 15 Ryd was used and the Brillouin zone 
integrations were performed with a special-points technique sampling ten points in the 
irreducible wedge of the first Brillouin zone. In each case the energies were calculated 
using the Harris energy functional, H ,  and Kohn-Sham energy functional, K ,  with the 
overlapping pseudo-atomic charge density for ni,. The calculation was then taken to 
self-consistency in order to calculate the converged energy E. The calculated energies 
were fitted to the Murnaghan equation of state (Murnaghan 1944) to obtain the bulk 
modulus and lattice constant. The results are given in table 1, together with the per- 
centage errors from the self-consistent results. These results indicate that the energies 
calculated using the superposition of pseudo-atomic charge densities for nin are accurate 
enough to obtain excellent values for the lattice constant and bulk modulus of silicon. 
This is in accordance with the results of Polatoglou and Methfessel(l988) who performed 
calculations on several materials, including silicon, and compared the cohesive energy, 
lattice constant and bulk modulus calculated from the Harris functional with the self- 
consistent results. We should also note that our self-consistent results are close to the 
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Figure 1. Contour plots of the pseudo-charge density of silicon in the (110) plane. (a )  The 
superposition of pseudo-atomic charge densities. n,". (b )  The self-consistent charge density, 
n. (c) The difference between the self-consistent charge density and the superposition of 
pseudo-atomic charge densities. n ~ n,,,. The contour spacing is 1.5 electrons/atom for ( a )  
and ( b )  and 1 electron/atom for (c). The positions of the atoms are indicated by crosses and 
the broken curves in (c) indicate negative values. 

experimental ones, the experimental lattice constant of silicon being 5.429 A and the 
experimental bulk modulus being 0.98 Mbar (Landolt-Biirnstein 1982). In each case the 
error in the quantities calculated with the Harris functional is about three times that 
using the Kohn-Sham functional. 

Contour plots of the superposition of pseudo-atomic charge densities, n,,, the self- 
consistent charge density, n ,  and the difference between them, n - n,", are shown in 
figures l ( a ) ,  l (b)  and l(c) respectively. The plots are sections in the (110) plane passing 
through the zig-zag chains of atoms. One can see from these plots that the major 
difference between the superposition of pseudo-atomic charge densities and the self- 
consistent charge density is the build up of charge between the atomsin the self-consistent 
solution. These 'bond charges' are roughly spherical and lie half-way between the 
atoms. This feature could easily be included in a new trial charge density which would 
presumably yield better agreement with the self-consistent results than the superposition 
of pseudo-atomic charge densities. 

Our next calculations were for phonon frequencies of silicon. Calculations of phonon 
frequencies in silicon by Wendel and Martin (1979) have already indicated that non-self- 
consistent calculations (but using the variational principle) may give reasonable results, 
but the details of their calculations were somewhat different from those presented in 
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Table 2. Results for the aluminium bulk and (111) surface calculations. The table gives the 
calculated values of the energy per atom for the bulk, the energy per atom for a calculation 
with a unit cell consisting of nine layers of aluminium and six layers of vacuum and the 
resulting values of the surface energy. In each case the total energies were calculated using 
the Harris functional, H ,  and the Kohn-Sham functional, K ,  with a superposition of pseudo- 
atomic charge densities for n,, and from a self-consistent calculation giving E. 

Harris Kohn-Sham Self-consistent 
using H using K using E 

Bulk A1 (eV/atom) --57.102 - 57.089 -57.089 
Deviation from E-result -0.02% + 0.001 5% 

Nine-layer slab AI (eV/atom) -57.083 -57.770 - 56.991 
Deviation from E-result -0.15% +2.2% 

Surface energy ( e v  A-’) 0.013 0.848 0.060 
Deviation from E-result -78% +1300% 

this paper. Our approach was to calculate the energy, again using the superposition of 
pseudo-atomic charge densities for n ln ,  as a function of the atomic displacements. The 
resulting energy-displacement curves were fitted to Chebyshev polynomials to calculate 
the second derivatives at zero displacement which gives the phonon frequencies. We did 
this for the To(r) mode using a third-order Chebyshev polynomial and for the TA@) 
mode using a second-order Chebyshev polynomial. A basis set containing all plane 
waves up to 15 Ryd in energy was used, sampling 5 k-points in the irreducible wedge of 
the Brillouin zone for the To(r) mode and 48 k-points for the TA(X) mode. The results 
are given in table 3 .  The self-consistent calculations gave phonon frequencies of 
15.31 THz for the ro(T) mode and 4.48 THz for the TA(X) mode which are in good 
agreement with the experimental results of 15.3 THz and 4.5 THz respectively (Landoff- 
Bornstein 1982). We conclude that the energies calculated using the superposition of 
pseudo-atomic charge densities for n,, are also accurate enough for obtaining excellent 
values for the To(r) and TA(X) phonon frequencies of silicon. In both cases the errors 
in the quantities calculated with the Harris functional are a little larger than those 
obtained using the Kohn-Sham functional. 

A simple way of improving the trial charge density for these cases can be devised by 
using the idea of ‘bond charges’ mentioned above. According to the bond charge model 
developed by Martin (1969) the bond charges are built up by scattering of the electrons 
from the nearest-neighbour ion cores and thus they should be approximately half-way 
between nearest neighbours even when the atoms are displaced. This idea could be used 
to obtain a trial charge density for the systems with displaced atoms. 

We have also performed a set of calculations on a rather different material, alu- 
minium, in order to calculate the (111) surface energy. We started with a calculation for 
bulk aluminium in the Fccstructure with the zero-temperature lattice constant of 4.02 A. 
To facilitate comparison we performed this calculation in the same unit cell as the 
surface calculation, consisting of a cell containing fifteen close-packed layers in a (111) 
orientation. A basis set containing all plane waves up to 12 Ryd in energy was used and 
for the Brillouin zone integration we sampled 37 k-points in the irreducible wedge. 
Again we used the superposed pseudo-atomic charge densities for n,, and calculated the 
Harris and Kohn-Sham energies and the self-consistent energy. The results are given in 
table 2. For bulk aluminium the energies calculated using n,, are extremely close to the 
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Figure 2. Contour plots in the (111) plane of the pseudo-charge density of bulk FCC alu- 
minium. (a) The superposition of atomic charge densities, ni,. ( b )  The self-consistent charge 
density, n. (c) The difference between the self-consistent charge density and the super- 
position of atomic charge densities, n - ntn. The contour spacing is 0.2 electrons/atom. The 
positions of the atoms are indicated by crosses and the broken curves in (c) indicate negative 
values. 

self-consistent energy. The charge-density plots of the superposed pseudo-atomic charge 
densities, the self-consistent charge density and the difference between then, n - nin, 
are shown in figures 2(a), 2(b) and 2(c) respectively. From these plots one can see that 
the most significant difference between the superposed pseudo-atomic charge densities 
and the self-consistent density is that, in forming the solid, charge moves radially 
outwards from the atoms to form a more uniform charge density. This could easily be 
modelled by isotropically dilating the individual atomic charge densities by a suitable 
amount. 

For the surface calculation we used the same size of unit cell as for the bulk calculation, 
but containing nine layers of aluminium and the equivalent of six layers of vacuum. We 
used the same basis set energy cut-off and Brillouin zone integration as for the bulk 
calculation. The energies obtained from these calculations and the resulting surface 
energies, calculated from the difference between surface and bulk energies, are given 
in table 2. The differences between the values calculated using the superposed pseudo- 
atomic charge densities and the self-consistent results leads to large errors in the surface 
energy. The error of 78% in the surface energy obtained using the Harris functional 
derives mainly from the error in the surface calculation where the energy is 0.086 eV per 
atom too low. The very large error of 1300% in the surface energy calculated with the 
Kohn-Sham functional also derives from the error in the surface calculation, but in this 
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Table 3. Results for the aluminium (111) surface. The table gives the values calculated for 
the energy using the Harris functional, H ,  and the Kohn-Sham functional, K ,  and the 
percentage error from the self-consistent result. The four calculations presented correspond 
to four different input charge densities of increasing accuracy. 

Energy from H (eV/atom) 
Calculation number (% error from E )  (% error from E )  

Energy from K (eV/atom) 

1 -57.083 -55.770 
(-0.15%) (+2.2%) 

2 - 57.009 -56.918 
(-0.022%) (+0.13%) 

(-0.011%) (+ 0.035 %) 
3 - 57.003 -56.977 

4 - 57.000 - 56.990 
(-0.005%) (+0.011%) 

case the energy was 1.227 eV per atom higher than the self-consistent result. Clearly the 
superposition of pseudo-atomic charge densities is not an adequate input charge density 
for calculating the surface energy using either the Harris or the Kohn-Sham energy 
functionals. However, the surface energy calculated with the Harris functional was 
considerably closer to the self-consistent result than the energy from the Kohn-Sham 
functional. We decided to investigate whether this was also the case for input charge 
densities that were closer to the self-consistent one. To obtain charge densities that were 
closer to the self-consistent result we used linear combinations of nin and nout obtained 
from intermediate cycles of the self-consistent calculation. The results are given in table 
3. Note that in each case the result from the Harris functional is closer to the self- 
consistent result than the Kohn-Sham result. We shall attempt to understand this 
important phenomenon in the next section of this paper. 

The charge-density plots for the superposed pseudo-atomic charge densities, the 
self-consistent charge density and the difference between them for the surface calculation 
are shown in figures 3(a),  3(b) and 3(c)  respectively. Note that the surface plots are 
sections in the ( l l i )  plane which is not perpendicular to the (111) surface. The reason 
for this choice was to facilitate comparison with the bulk charge densities of figure 2 
which are sections in the close-packed (111) plane. There appear to be two points of 
interest to be gained from these plots. Firstly, by comparison of figures 2(b) and 3(b) 
one can see that the charge density returns rapidly to the bulk form in the interior of the 
metal. Even one atomic layer away from the surface the charge density is remarkably 
close to the bulk self-consistent result. This is because the screening length in aluminium 
is very short (about 0.5 8, which is to be compared with the separation between atomic 
layers in the (111) direction of 2.32 A). The second point of interest is that the major 
difference between the superposed pseudo-atomic charge densities (figure 3(a)) and the 
self-consistent charge density (figure 3(b))  is the smoothing of the charge density in the 
plane of the surface in the self-consistent result. It appears that this feature of the charge 
density must be included in a trial charge density used for calculating the surface energy. 

5. Analysis of the long-wavelength behaviour in jellium 

In this section we investigate the size of the error terms in the Harris and Kohn-Sham 
energy functionals for a calculation on jellium. The exact solution is of course a constant 
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Figured. Contourplotsofthepseudo-chargedensityat the (111) surface of aluminium. Note 
that the plots are in the (111 plane which is not perpendicular to the surface. (a )  The 
superposition of atomic charge densities, n,". ( b )  The self-consistent charge density, n. (c) 
The difference between the self-consistent charge density and the superposition of atomic 
charge densities, n - nln. The contour spacing is 0.2 electrons/atom. The positions of the 
atoms are indicated by crosses and the broken curves (c) indicate negative values. 

charge density, no, but we shall imagine performing a calculation using an approximate 
charge density nln. We will work in a unit cell that is long and thin, being of length 
2n/q0 in the z direction, where qo is small. Suppose that we use a trial charge density 
given by 

n]"(r) = no + a cos(q0z) (12) 
where a is small. The trial charge density gives a Hartree potential, VH, which in 
reciprocal space as a function of wavevector q is given by 

vH(q) = (4;za/4~>~s(4,>s(4,>(6(4, - 4 0 )  + 6 ( q z  + 4 0 ) ) .  (13) 
There will also be an exchange-correlation potential generated by the sinusoidal term 
in the trial charge density, but we will neglect this. To calculate the output charge density 
we use the Thomas-Fermi density response function X(q) = -g(E,) where g(EF) is the 
density of states per unit volume at the Fermi energy. Of course we should use the 
density response function of the Kohn-Sham electrons but the Thomas-Fermi form 
should be a good approximation to this in the long-wavelength limit. This leads to 

= nOS(q) + x(q)vH(q) 

= n o w d  -g(E, ) (4;za /4~)~6(4 , )6(4 , ) (6(4 ,  - 40) + 6 ( 4 z  + 40)) .  (14) 
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We can now write down the form of the lowest-order error terms in the Kohn-Sham and 
Harris energy functionals. The Kohn-Sham function has an error 

K - E [ n ]  = O[(nout - n)(nout - n)]  + higher-order terms 

= O[(n,, - n)(n,, - n)/q;] + higher-order terms (15) 
and the Harris functional has an error 

H - E [ n ]  = O[(nou, - n)(n , ,  - n)]  + higher-order terms 

= -O[(n,, - n)(n,, - n ) / q i ]  + higher-order terms. (16) 
We can draw two conclusions from this analysis. Firstly, when the unit cell is long, so qo 
is small, then the error term for the Harris functional, which diverges like l /q i ,  should 
be smaller than the error term for the Kohn-Sham functional which diverges like 
l/qi. Secondly, the Harris functional should underestimate the energy because the error 
term in equation (16) is negative, whereas the Kohn-Sham function should overestimate 
the energy because the error term in equation (15) is positive. This means that the Harris 
functional should actually be maximal at the correct charge density. Table 3 shows 
exactly this behaviour for the aluminium surface calculations. In each case the energy 
from the Harris functional is closer to the self-consistent result than the Kohn-Sham 
functional and in each case the Harris functional underestimates the energy while the 
Kohn-Sham functional overestimates it. We believe that this phenomenon is due to the 
same kind of long-wavelength behaviour that we have found in the simple model studied 
in this section, in which the long-wavelength instability arises from the form of the 
dielectric response function at low q. 

6 .  Conclusions 

We have compared results obtained with the Kohn-Sham and Harris energy functionals 
€or a variety of physical properties of silicon and aluminium. Using an input charge 
density formed from superposing pseudo-atomic charge densities in conjunction with 
either the Kohn-Sham or Harris functional gives excellent values for the energies of 
bulk silicon and aluminium. We have shown that the superposition of pseudo-atomic 
charge densities is sufficiently close to the self-consistent charge density to allow accurate 
calculation of quantities such as the bulk modulus and phonon frequencies of silicon. 
For bulk properties the error using the Kohn-Sham functional was typically about a 
third of that from using the Harris functional. For each of our calculations we have 
attempted to indicate the major differences between the self-consistent charge densities 
and the superposed pseudo-atomic charge densities. We find that, for the systems we 
have studied, these differences are of a rather simple kind and we believe that it should 
be straightforward to include these effects in new trial charge densities. 

An input charge density of superposed pseudo-atomic charge densities was not 
adequate for calculating the surface energy of aluminium using either the Harris or the 
Kohn-Sham functionals. We found that the error in the surface energy was much larger 
for the Kohn-Sham functional. This result appears to be quite general; when calculations 
were performed with a range of input charge densities the energy obtained from the 
Harris functional was always more accurate than the Kohn-Sham result. In each case 
the Kohn-Sham energy was an ouerestimate of the self-consistent result while the Harris 
result was an underestimate. Under these circumstances one can use the Kohn-Sham 
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and Harris functionals to give upper and lower bounds to the total energy, with the exact 
result being closer to the Harris energy. We have presented an explanation of this effect 
in terms of the long-wavelength instability encountered in solving the Kohn-Sham 
equations. This is a very important observation because techniques involving evaluation 
of the total energy using approximate charge densities are likely to be used when the 
system is large and it is for large systems that the long-wavelength instability is most 
pronounced. Therefore it seems that the Harris functional will be useful in total energy 
calculations whether or not the output charge density is available. 
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